Non-Linear Smoothed Transductive Network Embedding with Text Information
نویسندگان
چکیده
Network embedding is a classical task which aims to map the nodes of a network to lowdimensional vectors. Most of the previous network embedding methods are trained in an unsupervised scheme. Then the learned node embeddings can be used as inputs of many machine learning tasks such as node classification, attribute inference. However, the discriminant power of the node embeddings maybe improved by considering the node label information and the node attribute information. Inspired by traditional semi-supervised learning techniques, we explore to train the node embeddings and the node classifiers simultaneously with the text attributes information in a flexible framework. We present Non-Linear Smoothed Transductive Network Embedding (NLSTNE), a transductive network embedding method, whose embeddings are enhanced by modeling the non-linear pairwise similarity between the nodes and the non-linear relationships between the nodes and the text attributes. We use the node classification task to evaluate the quality of the node embeddings learned by different models on four real-world network datasets. The experimental results demonstrate that our model outperforms several state-of-the-art network embedding methods.
منابع مشابه
Transductive Non-linear Learning for Chinese Hypernym Prediction
Finding the correct hypernyms for entities is essential for taxonomy learning, finegrained entity categorization, knowledge base construction, etc. Due to the flexibility of the Chinese language, it is challenging to identify hypernyms in Chinese accurately. Rather than extracting hypernyms from texts, in this paper, we present a transductive learning approach to establish mappings from entitie...
متن کاملA New Document Embedding Method for News Classification
Abstract- Text classification is one of the main tasks of natural language processing (NLP). In this task, documents are classified into pre-defined categories. There is lots of news spreading on the web. A text classifier can categorize news automatically and this facilitates and accelerates access to the news. The first step in text classification is to represent documents in a suitable way t...
متن کاملLink Prediction using Network Embedding based on Global Similarity
Background: The link prediction issue is one of the most widely used problems in complex network analysis. Link prediction requires knowing the background of previous link connections and combining them with available information. The link prediction local approaches with node structure objectives are fast in case of speed but are not accurate enough. On the other hand, the global link predicti...
متن کاملInvestigating Financial Crisis Prediction Power using Neural Network and Non-Linear Genetic Algorithm
Bankruptcy is an event with strong impacts on management, shareholders, employees, creditors, customers and other stakeholders, so as bankruptcy challenges the country both socially and economically. Therefore, correct prediction of bankruptcy is of high importance in the financial world. This research intends to investigate financial crisis prediction power using models based on Neural Network...
متن کاملSEANO: Semi-supervised Embedding in Attributed Networks with Outliers
In this paper, we propose a novel framework, called Semi-supervised Embedding in Attributed Networks with Outliers (SEANO), to learn a low-dimensional vector representation that systematically captures the topological proximity, attribute affinity and label similarity of vertices in a partially labeled attributed network (PLAN). Our method is designed to work in both transductive and inductive ...
متن کامل